

福州盈创筑业工程设计有限公司

Fuzhou Ying Chuang Construction Engineering Design

(证书编号: A235033004)

建筑计算书

福建省工程勘察设计图纸专用章 福州盈创筑业工程设计有限公司 范围:建筑(建筑) 等级:乙级证号: A235033004 有效期至: 2023年12月16日

中华人民共和国一级注册建筑师

姓名: 李登科

注册号: 3503300-003

育放期:至2022年12月

建设单位第七师胡杨河市文体广电和旅游局工程名称七师胡杨水韵生态旅游提升项目
锅炉房、空调机房工程编号BTJY07GCGK2021062-01-01(A)

校对人

审 核 人 _____

建筑节能计算分析报告书

本报告签字盖章后生效

此项目判定依据为《公共建筑节能设计标准》(XJJ034-2017)

项目名称: 锅炉房、空调机房

建设单位: 第七师胡杨河市文体广电和旅游局

设计单位: 福州盈创筑业工程设计有限公司

施工单位: ______

福建省工程勘察设计图纸专用章福州盈创筑业工程设计有限公司资质。 建筑 (建筑)等级:乙级证号: A235033004有效期至:2023年12月16日

中华人民共和国一级注册建筑师

姓名: 李登科

注册号: 3503300-003 有效期: 至2022年12月

规范标准参考依据:

- 1、《公共建筑节能设计标准》(XJJ034-2017)。
- 2、《民用建筑热工设计规范》(GB50176-2016)。
- 3、《建筑幕墙》(GB/T 21086-2007)。

建筑材料热工参数参考依据:

材料名称	干密度	导热系数 蓄热系数		修	正系数 α	选用依据	
17件石物	Kg/m^3	W/(m.K)	$W/(m^2.K)$	α	使用部位	延用似据	
						《寒冷地区居住建筑	
XPS 挤塑聚苯板(带					屋顶/外墙/	节能设计标准》	
表皮)	25	0.030	0.24	1.10	热桥过梁/	XJJ/T073-2016/《公共	
(人)					热桥楼板	建筑节能设计标准》	
						XJJ034-2017	
EPS 板保温层	20	0.041	0.20	1.20	架空楼板	厂家提供	

门窗类型	传热系数 W/(m².K)	玻璃遮阳系数	选用依据
铝合金(断热桥)充气中空玻璃(5+12A+4) 窗	2.10	0.77	新 07J714(图集)

一. 建筑概况

建筑用途: 办公

建筑类型划分依据:《公共建筑节能设计标准》(XJJ034-2017)

甲类建筑: 单栋建筑面积大于 300 m²的建筑,或单栋建筑面积小于或等于 300 m²但总建筑面积 大于 1000 m²的建筑群为甲类建筑;

乙类建筑: 单栋建筑面积小于或等于 300 ㎡的建筑, 或单栋建筑面积小于或等于 300 ㎡且总建

筑面积小于或等于 1000 m²的建筑群为乙类建筑;

该建筑类型为: 乙类建筑

城市: <u>奎屯(北纬=44.38°, 东经=84.92°)</u>

气候分区: 严寒 C 区

建筑名称: 锅炉房、空调机房

建筑朝向: 南偏西 55 度

建筑体形:

建筑结构类型: 砖混结构

体形系数: __1.14__

节能计算建筑面积(地上): ____50.76___ m² 建筑体积(地上): ____182.74____ m³

节能计算建筑面积(地下): ______ m^2 建筑体积(地下): ______ m^3

节能计算总建筑面积: ____50.76___ m² _____建筑总体积: ____182.74____ m³

建筑表面积: 208.08 m²

建筑层数: 1

建筑物高度: 3.60 m

层高汇总表

标准层	实际楼层	层高(m)
标准层 1	1层	3.60

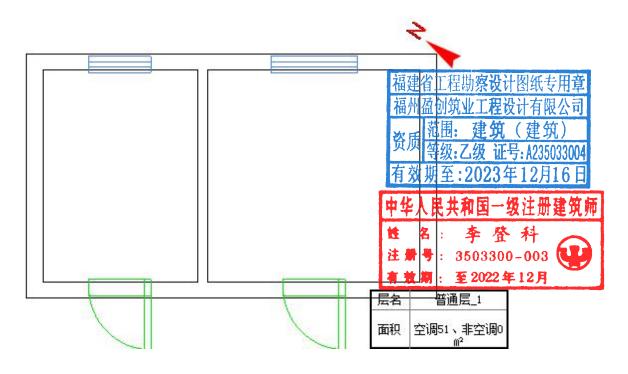
全楼外窗(包括透明幕墙)、外墙面积汇总表

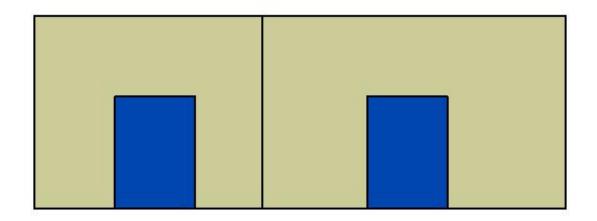
胡白	外窗面积(包括透明幕	朝向面积	朝向
朝向	墙)(m²)	(m^2)	窗墙比
东		19.44	
南			
西		33.84	
北	5.40	53.28	0.10

福州盈创筑业工程设计有限公司 资质 范围: 建筑 (建筑) 等级:乙级 证号: A235033004 有效期至: 2023年12月16日

中华人民共和国一级注册建筑师

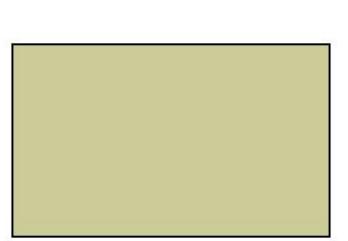
姓名: 李登科


注册号: 3503300-003

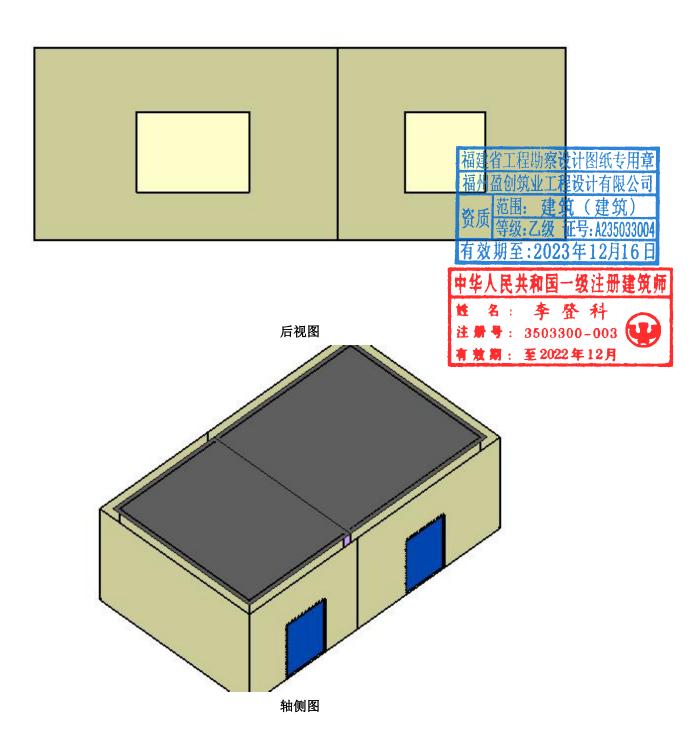

有 敖期: 至 2022年12月

合计	5 40	106.56	0.05
H V I	3.40	100.50	0.05

建筑大样图:


前视图

骨号: 3503300-003 支期: 至2022年12月



左视图

右视图

二. 建筑围护结构

1. 围护结构构造

<u>http://www.pkpm-sh.cn</u> 第 6 页 共 14 页 20200730

软件热工参数计算取两位有效数字。

屋面类型(自上而下): 防水层(4.0mm)+C20细石混凝土找平层(30.0mm)+加气混凝土砌块(30.0mm)+XPS挤塑聚苯板(带表皮)(100.0mm)+钢筋混凝土(120.0mm)+室内抹灰(20.0mm)

外墙类型 (包括非透光幕墙) (默认外墙): 薄抹灰饰面层 (15.0mm) +水泥砂浆 (20.0mm) +XPS 挤塑聚苯板 (带表皮) (100.0mm) +KP1 砖 (240.0mm) +水泥砂浆 (20.0mm)

中华人民共和国一级注册建筑师

性 名: 李 登 科 注册号: 3503300-003

有效期:至2022年12月

2. 建筑热工节能计算汇总表

主要热工性能参数:

2.1 屋顶

屋顶构造类型 1: 防水层 (4.0mm) +C20 细石混凝土找平层 (30.0mm) +加气混凝土砌块 (30.0mm) +XPS 挤塑聚苯板 (带表皮) (100.0mm) +钢筋混凝土 (120.0mm) +室内抹灰 (20.0mm)

屋顶类型传热系数判定

表 0

		1				
屋顶 1	厚 度	导热系数	蓄热系数	热 阻 值	热惰性指	修正系数
每层材料名称	(mm)	W/(m.K)	$W/(m^2.K)$	$(m^2.K)/W$	标 D=R.S	α
防水层	4.0	0.170	3.29	0.024	0.08	1.00
C20 细石混凝土找平层	30.0	1.280	13.37	0.023	0.31	1.00
加气混凝土砌块	30.0	0.190	7.60	0.158	1.20	1.00
XPS 挤塑聚苯板(带表皮)	100.0	0.030	0.24	3.030	0.80	1.10
钢筋混凝土	120.0	1.740	17.20	0.069	1.19	1.00
室内抹灰	20.0	0.870	10.59	0.023	0.24	1.00
屋顶各层之和	304.0			3.33	3.82	

屋顶热阻 $Ro=Ri+\sum R+Re=3.49$ (m^2 . K/W)

 $Ri = 0.115 \text{ (m}^2. \text{ K/W)}; Re = 0.043 \text{ (m}^2. \text{ K/W)}$

屋顶传热系数 K=1/Ro= 0.29 W/(m².K)

太阳辐射吸收系数ρ=0.50

严 寒 C 区 乙 类 建 筑 屋 面 传 热 系 数 满 足 《 公 共 建 筑 节 能 设 计 标 准 》 (XJJ034-2017)第 3.3.2-1 条 规 定 的 $K \le 0.45$ 的 要 求 。

2.2 外墙

外墙主体部分构造类型 1: 薄抹灰饰面层(15.0mm)+水泥砂浆(20.0mm)+XPS 挤塑聚苯板(带表皮)(100.0mm)+KP1 砖(240.0mm)+水泥砂浆(20.0mm)

外墙类型传热系数

表 1

外墙 1	厚 度	导热系数	蓄热系数	热阻值	热惰性指	修正系数	
每层材料名称	(mm)	W/(m.K)	$W/(m^2.K)$	$(m^2.K)/W$	标 D=R.S	α	
薄抹灰饰面层	15.0	0.930	11.27	0.016	祖建省工程勘	3.00 _{上阿/4-}	田本
水泥砂浆	20.0	0.930	11.37	0.022		定义 // 国外 *	<u> </u>
XPS 挤塑聚苯板(带表皮)	100.0	0.030	0.24	3.030	1978年日	上 在 汉月月1	公司
KP1 砖	240.0	0.580	7.42	0.414	20世:	基本 人建筑)
水泥砂浆	20.0	0.930	11.37	0.022		以从与: A235V	
外墙各层之和	395.0			3.50	有效期至:2		
外墙热阻 $Ro=Ri+\sum R+Re=3.66$ (m². K/W) $Ri=0.115$ (m²					WE KE早世知	国(量)级/律)册	津頒师
外墙传热系数 Kp=1/Ro=	外墙传热系数 K _p =1/Ro= 0.27 W/(m ² .K)					欢 41	-/0/1
太阳辐射吸收系数 ρ =0	.50				1 117	н 17	

热桥过梁(过梁)构造类型1: 水泥砂浆(20.0mm)+XPS挤塑聚苯板(带表皮)(100.0mm)+钢筋混凝土(200.0mm)+石灰水泥砂浆(20.0mm)

热桥过梁类型传热系数

表 2

「放期:至2022年12月

热桥过梁 1	厚 度	导热系数	蓄热系数	热 阻 值	热惰性指	修正系数
每层材料名称	(mm)	W/(m.K)	$W/(m^2.K)$	$(m^2.K)/W$	标 D=R.S	α
水泥砂浆	20.0	0.930	11.37	0.022	0.24	1.00
XPS 挤塑聚苯板(带表皮)	100.0	0.030	0.24	3.030	0.80	1.10
钢筋混凝土	200.0	1.740	17.20	0.115	1.98	1.00
石灰水泥砂浆	20.0	0.870	10.75	0.023	0.25	1.00
热桥过梁各层之和	340.0			3.19	3.27	
热桥过梁热阻 $Ro=Ri+\sum R+Re=3.35$ (m². K/W) $Ri=0.115$ (m². K/W); $Re=0.043$ (m². K/W)						
传热系数 K _{B3} =1/Ro= 0.30 W/(m ² .K)						

热桥楼板(墙内楼板)构造类型1: 水泥砂浆(20.0mm)+XPS挤塑聚苯板(带表皮)(70.0mm)+钢筋混凝土(100.0mm)

热桥楼板类型传热系数

表 3

20200730

热桥楼板 1	厚 度	导热系数	蓄热系数	热 阻 值	热惰性指	修正系数
每层材料名称	(mm)	W/(m.K)	$W/(m^2.K)$	$(m^2.K)/W$	标 D=R.S	α
水泥砂浆	20.0	0.930	11.37	0.022	0.24	1.00
XPS 挤塑聚苯板(带表皮)	70.0	0.030	0.24	2.121	0.56	1.10
钢筋混凝土	100.0	1.740	17.20	0.057	0.99	1.00
热桥楼板各层之和	190.0			2.20	1.79	

热桥楼板热阻 $Ro=Ri+\Sigma R+Re=2.36$ (m². K/W) Ri=0.115 (m². K/W); Re=0.043 (m². K/W) 传热系数 $K_{B4}=1/Ro=0.42$ W/(m². K)

外墙结构性热桥

外墙结构性热桥计算表

表4

						•
热桥位置	朝向	节点做法	线传热系数	热桥计算长度	₩*Г	
然彻区且	#311⊾1	AFMI W. 1	Ψ (W/m ² K)	(n 福建省	下程比 数43	专用意
	东	W-R1	0.400	5.4 00 川及	训给小子克姆计名	限八司
外墙-屋顶	西	W-R1	0.400	9.400	国。建筑(建	441
	北	W-R1	0.400	14.300质量	が、ファック 44.ファック 144.Dry 144.Dry 144.Dry 145.Dry 1	15022004
外墙-窗左右口	北	W-WR1	0.125	6.000 計畫	次。口次 LL J: NZ	H16 H
外墙-窗下口	北	W-WB1	0.063	3,000	± · 2023 + 12	910 П
外墙-窗上口	北	W-WU1	0.063	3 邮华人	共和国225级注	册建筑师
	东	W-C1	-0.023	3 <mark>600 名</mark>	: 李0.0點 科	
外墙-墙角	西	W-C1	-0.023	7 <mark>.2<u>0</u>0 🙀 👙</mark>	: 3509360-00	3
	北	W-C1	-0.023	10.800	: 至2025年12	
	东	W-A1	0.063	5.400	0.340	
外墙-挑空楼板	西	W-A1	0.063	9.400	0.592	
北	北	W-A1	0.063	14.800	0.933	
Allat Halat	西	W-P1	-0.002	7.200	-0.013	
外墙-内墙	北	W-P1	-0.002	7.200	-0.013	

外墙各个方向主墙体部分平均热工特性

东向主体墙平均传热系数

表5

构造名称	面积(m²)	主墙体传热系数K (W/m²•K)	节点Ψ*L(W/K)		
默认外墙	19.44	0.27	2.42		
合计	19.44	0.27	2.42		
东向主体墙平均传热系 数K	$Ke = K + \Sigma \Psi j*Lj / A = 0.27 + (2.42 / 19.44) = 0.39$				

西向主体墙平均传热系数

表6

构造名称	面积(m²)	主墙体传热系数K (W/m²•K)	节点Ψ*L(W/K)		
默认外墙	27.54	0.27	4.17		
合计	27.54	0.27	4.17		
西向主体墙平均传热系 数K	$K_W = K + \sum \Psi j^* L_j / A = 0.27 + (4.17 / 27.54) = 0.42$				

北向主体墙平均传热系数

表7

构造名称	面积(m²)	主墙体传热系数K (W/m²•K)	节点Ψ*L(W/K)		
默认外墙	47.88	0.27	7.79		
合计	47.88	0.27	7.79		
北向主体墙平均传热系 数K	$Kn = K + \sum \Psi j*Lj / A = 0.27 + (7.79 / 47.88) = 0.43$				

外墙平均传热系数

外墙平均传热系数表

福州盈创筑业工程设计有限公司 范围:建筑(建筑) 等级:乙级证号: A235033004

ししょ トイレ		主墙体传热系数K	月从州土、4040十14	H10 [
构造名称	面积(m²)	(W/m² • K)	中华人民共和国一级注	册建筑师
默认外墙	94.86	0.27	姓名: 14월 啓科	
合计	94.86	0.27	注册号:1 35 83300-00	3
考虑线性热桥后的K	$Km = K + \Sigma$	$\Sigma \Psi j*Lj / A = 0.27 + (14.38)$	₩ ⁹⁴ ₩ = 0. 12 2022 年 12	

外墙平均传热系数满足《公共建筑节能设计标准》(XJJ034-2017)第3.3.2-1条规定的K≤0.50W/(㎡·K)的标准要求。

2.3 外窗

外窗构造类型 1:铝合金(断热桥)(充气中空玻璃(5+12A+4)窗),传热系数 2.10W/m².K,玻璃遮阳系数 0.77,气密性为 6 级,可见光透射比 0.60

外窗(含透光幕墙)传热系数判断表

表 10

朝向	立面	规格型号	外窗面积 (m²)	传热系数 W/(m².K)	立面窗墙 比(包括 透光幕 墙)	加权传热 系数 W/(m².K)	传热系数 限值 W/(m².K)
ال. مال	立面1	铝合金(断热桥)充气中空玻璃(5+12A+4)窗	5.40	2.10	0.16	2.1	€2.2
北	(北偏东 55°)	该朝向立面外窗加权传热系数满足《公共建筑节能设计标准》(XJJ034-2017)第3.3.2-2 条的要求。					

2.4 气密性

建筑的气密性判定

表 11

楼层	气密性等级	气密性等级限值

有 放 期: 至 2022 年 12月

第1层	外窗气密性 6 级	外窗气密性不低于6级				
第1层	外门气密性 6 级	外门气密性不低于4级				
外窗气密性满足《公共建筑节能设计标准》(XJJ034-2017)第 3.3.5 条的要求;						

外窗气密性满足《公共建筑节能设计标准》(XJJ034-2017)第 3.3.5 条的要求; 玻璃幕墙气密性满足《公共建筑节能设计标准》(XJJ034-2017)第 3.3.6 条的要求; 外门气密性满足《公共建筑节能设计标准》(XJJ034-2017)第 3.3.5 条的要求

2.5 外窗有效通风换气面积判断表

有效通风换气面积判定表(详见附表1)

					岩川乃為かか川、ナカカバ
楼层名	房间编号	房间名称	有效通风换 气面积(m²)	外窗面积 (m²)	東 東 東 東 東 東 東 東 東 東 東 東 東 東
普通层_1	1	普通办公室	1.13	2.25	中5生00% 共和居30级0%
中国极大级	日本与五旬出	ロ	+ AE 1/L 1 1 4= MA: W	(3/1102 / 2017)	

房间的有效通风换气面积满足《公共建筑节能设计标准》(XJJ034-2017)第 32.8 条规定的有效积不宜小于窗面积的 30%的要求。

3. 结论

各分项指标校核情况如下:

在分类相称仅仅用55.4.1	
建筑构件	是否达标
屋顶的热工值满足《公共建筑节能设计标准》(XJJ034-2017)第 3.3.2-1 条的标准要求。	✓
外墙平均传热系数满足《公共建筑节能设计标准》(XJJ034-2017)第 3.3.2-1 条的标准要	✓
求。	
立面外窗传热系数满足《公共建筑节能设计标准》(XJJ034-2017)第 3.3.2-2 条的要求。	✓
外窗气密性满足《公共建筑节能设计标准》(XJJ034-2017)第 3.3.5 条的要求。	✓
玻璃幕墙气密性满足《公共建筑节能设计标准》(XJJ034-2017)第 3.3.6 条的要求。	√
外门气密性满足《公共建筑节能设计标准》(XJJ034-2017)第 3.3.5 条的要求。	√
有效通风换气面积占窗面积比例满足《公共建筑节能设计标准》(XJJ034-2017)第 3.2.8	√
条的要求。	
无屋顶透光部分。	✓

与《公共建筑节能设计标准》(XJJ034-2017)相比较,该建筑物的各项指标满足规范要求。

结论: 各项围护结构热工性能指标满足规范要求。

表 1: 采暖建筑围护结构结露设计

一、基本计算参数

计算地点: 奎屯

室内计算温度 ti: 18℃

冬季室外计算温度 te: -22℃

冬季室内相对湿度: 60.00%

露点温度 T 露点: 10.15℃

福建省工程勘察设计图纸专用章福州盈创筑业工程设计有限公司资围:建筑(建筑)等级:乙级证号: A235033004有效期至:2023年12月16日

二、围护结构结露验算

中华人民共和国一级注册建筑师

最不利热桥类型 每层材料名称	厚度 (mm)	导热系数 W/(m • K)	蓄热系数 W/(m² •K)	热阻值 <mark>注</mark> (m² •K) W	操惰性指 , 分号标 350 发 约 =R. 至 2	登科 3505-003 022年12月	
水泥砂浆	20.0	0.930	11.37	0.02	0.24	1.00	
XPS 挤塑聚苯板(带表皮)	70.0	0.030	0.24	2.12	0.56	1.10	
钢筋混凝土	100.0	1.740	17.20	0.06	0.99	1.00	
各层之和	190.0			2.20	1.79		
热阻 Ro=Ri+ΣR+Re=2.36(m² • K/W) Ri= 0.115(m² • K/W);Re=0.043(m² • K/W)						m² • K/W)	
传热系数 K=1/Ro=0.42							

结露验算公式:

由此算出内表面温度然后和露点温度进行对比,大于露点温度就不会结露,反之就会结露。

备注: ti 冬季室内设计计算温度;

θ'i 内表面温度;

R'o 热桥部位传热阻 (m² • K/W);

te 冬季室外计算温度;

Ri 内表面换热阻 (m² • K/W);

经验算 θ i=16.05℃,故 θ i≥T 露点,满足《公共建筑节能设计标准》(XJJ034-2017)第 3.3.4 条规定,热桥部位不会发生结露。

http://www.pkpm-sh.cn 第 12 页 共 14 页 20200730

表 2: 采暖建筑围护结构结露设计

一、基本计算参数

计算地点: 奎屯

室内计算温度 ti: 18℃

冬季室外计算温度 te: -22℃

冬季室内相对湿度: 60.00%

露点温度 T 露点: 10.15℃

福建省工程勘察设计图纸专用章福州盈创筑业工程设计有限公司资围:建筑(建筑)等级:乙级证号: A235033004有效期至:2023年12月16日

二、围护结构结露验算

中华人	民共和国	一级	注册	建筑师
1. (Z)		及.	3 :L	

最不利屋顶类型 每层材料名称	厚度 (mm)	导热系数 W/(m • K)	蓄热系数 W/(m² •K)		無惰性指 子 景号标 350 ★ 数 =R. 至 2	登科 3565-883 022年12月
防水层	4.0	0.170	3.29	0.02	0.08	1.00
C20 细石混凝土找平层	30.0	1.280	13.37	0.02	0.31	1.00
加气混凝土砌块	30.0	0.190	7.60	0.16	1.20	1.00
XPS 挤塑聚苯板(带表皮)	100.0	0.030	0.24	3.03	0.80	1.10
钢筋混凝土	120.0	1.740	17.20	0.07	1.19	1.00
室内抹灰	20.0	0.870	10.59	0.02	0.24	1.00
各层之和	304.0			3.33	3.82	
热阻 Ro=Ri+ΣR+Re=3.49(m² • K/W) Ri= 0.115(m² • K/W);Re=0.043(m² • K/W)						
传热系数 K=1/Ro=0.29						

结露验算公式:

由此算出内表面温度然后和露点温度进行对比,大于露点温度就不会结露,反之就会结露。

备注: ti 冬季室内设计计算温度;

θ'i 内表面温度;

R'o 热桥部位传热阻 (m² • K/W);

te 冬季室外计算温度;

Ri 内表面换热阻 (m² • K/W);

经验算 θ i=16.68℃,故 θ i≥T 露点,满足《公共建筑节能设计标准》(XJJ034-2017)第 3.3.4 条规定,屋顶部位不会发生结露。

福建省工程勘察设计图纸专用章 福州盈创筑业工程设计有限公司 范围:建筑(建筑) 等级·乙级证号·A235033004

有效期至:2023年12月16日

中华人民共和国一级注册建筑州

五 名: 字 登 科 注册号: 3503300-003

有效期:至2022年12月